Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.794
Filtrar
1.
Exp Dermatol ; 33(4): e15079, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38654506

RESUMO

Common characteristics in the pathogenesis of psoriasis (PS) and atopic dermatitis (AD) have been presumed, but only a few studies have clearly supported this. The current aim was to find possible similarities and differences in protein expression patterns between these two major chronic inflammatory skin diseases. High-throughput tandem mass spectrometry proteomic analysis was performed using full thickness skin samples from adult PS patients, AD patients and healthy subjects. We detected a combined total of 3045 proteins in the three study groups. According to principal component analysis, there was significant overlap between the proteomic profiles of PS and AD, and both clearly differed from that of healthy skin. The following validation of selected proteins with western blot analysis showed similar tendencies in expression levels and produced statistically significant results. The expression of periostin (POSTN) was consistently high in AD and very low or undetectable in PS (5% FDR corrected p < 0.001), suggesting POSTN as a potential biomarker to distinguish these diseases. Immunohistochemistry further confirmed higher POSTN expression in AD compared to PS skin. Overall, our findings support the concept that these two chronic skin diseases might share considerably more common mechanisms in pathogenesis than has been suspected thus far.


Assuntos
Moléculas de Adesão Celular , Dermatite Atópica , Proteômica , Psoríase , Dermatite Atópica/metabolismo , Humanos , Psoríase/metabolismo , Proteômica/métodos , Moléculas de Adesão Celular/metabolismo , Adulto , Feminino , Masculino , Pessoa de Meia-Idade , Biomarcadores/metabolismo , Espectrometria de Massas em Tandem , Pele/metabolismo , Análise de Componente Principal , Estudos de Casos e Controles
2.
Int Immunopharmacol ; 130: 111805, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38457930

RESUMO

OBJECTIVE: To elucidate the mechanism of Pentraxin 3 (PTX3) in the pathogenesis of psoriasiform dermatitis using Ptx3-knockout (Ptx3-KO) background mice. METHODS: An Imiquimod (IMQ)-induced murine psoriatic model was created using Ptx3-KO (Ptx3-/-) and wild-type (Ptx3+/+) mice. Skin lesion severity and expression of inflammatory mediators (IL-6 and TNFα) were assessed using PASI score and ELISA, respectively. Cutaneous tissues from the two mice groups were subjected to histological analyses, including HE staining, Masson staining, and Immunohistochemistry (IHC). The PTX3, iNOS, COX2, and Arg1 expressions were quantified and compared between the two groups. We used RNA-seq to clarify the underlying mechanisms of the disease. Flow cytometry was used to analyze systemic Th17 cell differentiation and macrophage polarization. RESULT: The psoriatic region exhibited a higher PTX3 expression than the normal cutaneous area. Moreover, PTX3 was upregulated in HaCaT cells post-TNFα stimulation. Upon IMQ stimulation, Ptx3-/- mice displayed a lower degree of the psoriasiform dermatitis phenotype compared to Ptx3+/+ mice. Consistent with the RNA-seq results, further experiments confirmed that compared to the wild-type group, the PTX3-KO group exhibited a generally lower IL-6, TNFα, iNOS, and COX2 expression and a contrasting trend in macrophage polarization. However, no significant difference in Th17 cell activation was observed between the two groups. CONCLUSIONS: This study revealed that PTX3 was upregulated in psoriatic skin tissues and TNFα-stimulated HaCaT cells. We also discovered that PTX3 deficiency in mice ameliorated the psoriasiform dermatitis phenotype upon IMQ stimulation. Mechanistically, PTX3 exacerbates psoriasiform dermatitis by regulating macrophage polarization rather than Th17 cell differentiation.


Assuntos
Proteína C-Reativa , Dermatite , Psoríase , Componente Amiloide P Sérico , Animais , Camundongos , Proteína C-Reativa/genética , Proteína C-Reativa/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Dermatite/metabolismo , Dermatite/patologia , Modelos Animais de Doenças , Imiquimode/farmacologia , Interleucina-6/metabolismo , Macrófagos/patologia , Psoríase/metabolismo , Psoríase/patologia , Componente Amiloide P Sérico/genética , Componente Amiloide P Sérico/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Humanos , Progressão da Doença , Camundongos Knockout , Camundongos Endogâmicos C57BL
3.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542277

RESUMO

Mitochondria are eukaryotic cellular organelles that function in energy metabolism, ROS production, and programmed cell death. Cutaneous epithelial and hair follicle dermal papilla cells are energy-rich cells that thereby may be affected by mitochondrial dysfunction and DNA mutation accumulation. In this review, we aimed to summarize the medical literature assessing dermatologic conditions and outcomes associated with mitochondrial dysfunction. A search of PubMed and Embase was performed with subsequent handsearching to retrieve additional relevant articles. Mitochondrial DNA (mtDNA) deletions, mutation accumulation, and damage are associated with phenotypic signs of cutaneous aging, hair loss, and impaired wound healing. In addition, several dermatologic conditions are associated with aberrant mitochondrial activity, such as systemic lupus erythematosus, psoriasis, vitiligo, and atopic dermatitis. Mouse model studies have better established causality between mitochondrial damage and dermatologic outcomes, with some depicting reversibility upon restoration of mitochondrial function. Mitochondrial function mediates a variety of dermatologic conditions, and mitochondrial components may be a promising target for therapeutic strategies.


Assuntos
Lúpus Eritematoso Sistêmico , Doenças Mitocondriais , Psoríase , Animais , Camundongos , Mitocôndrias/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Lúpus Eritematoso Sistêmico/metabolismo , Psoríase/metabolismo , Doenças Mitocondriais/metabolismo
4.
Mol Biol Rep ; 51(1): 465, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38551769

RESUMO

As the largest human organ, the skin is continuously exposed to various external and internal triggers that affect body homeostasis. Psoriasis is a persistent inflammatory skin condition that has a major bearing on patients' physiological functioning as well as their mental well-being. It is an autoimmune disorder and has been the focus of extensive research efforts in recent years. Cells secrete exosomes into the environment surrounding them, which comprises a lipid bilayer. The movement of cellular components like microRNAs, mRNAs, DNA, lipids, metabolites, and cell-surface proteins is mediated by exosomes. Exosomes are crucial for inducing communication between cells. There has been extensive study of exosomes, both preclinical and clinical, looking at their potential role in autoimmune diseases. Besides the role that they play in the body's basic processes, exosomes are also considered an increasingly essential part as diagnostic and therapeutic agents. In the following article, we conduct a literature review of current studies related to molecular and structural aspects of exosomes. We emphasis on the function of exosomes in pathogenesis, as well as the possibility of their usage in medicinal applications and as biomarkers.


Assuntos
Doenças Autoimunes , Exossomos , MicroRNAs , Psoríase , Humanos , Exossomos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Psoríase/diagnóstico , Psoríase/terapia , Psoríase/metabolismo , Pele/metabolismo , Biomarcadores/metabolismo
5.
Front Immunol ; 15: 1344963, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38482003

RESUMO

Background: Disturbed gut microbiota and associated metabolic dysfunction exist in Psoriasis. Despite the growing use of interleukin-17 inhibitor (anti-IL17) therapy, the effect of anti-IL17 on gut/skin microbiota function is not fully understood in patients with Psoriasis. Objective: Therefore, we explored whether Psoriasis is associated with alterations in selected gut/skin microbiota in a study cohort, and a longitudinal cohort study to reveal the effects of IL-17A inhibitor treatment on gut microbiota in Psoriasis. Methods: In a case-control study, 14 patients with Psoriasis and 10 age, sex and body mass index-matched Healthy Controls were recruited. Longitudinal mapping of the gut microbiome was performed using 16S rRNA gene sequencing. Mouse models were used to further study and validate the interrelationship between the skin microbiome and the gut microbiome in Psoriasis. PICRUST2 was applied to predict the function of the bacterial community. Results: In Psoriasis patients, gut microbiota dysbiosis was present with increased heterogeneity: decreased Bacteroidota and increased Firmicutes as well as Actinobacteriota predominating in Psoriasis. Escherichia-Shigella enrichment was associated with reduction in serum levels of total bile acid and markers in Apoptotic pathways. After IL-17A inhibitor treatment in Psoriasis patients, longitudinal studies observed a trend toward a normal distribution of the gut microbiome and modulation of apoptosis-related metabolic pathways. Results from a mouse model showed dysregulation of the skin microbiota in Psoriasis characterized by Staphylococcus colonization. Conclusion: The psoriatic gut/skin microbiota exhibits loss of community stability and pathogen enrichment. IL-17A inhibitors restore microbiota homeostasis and metabolic pathways, reduce pro-inflammatory cytokine expression, and alleviate symptoms in patients with Psoriasis.


Assuntos
Microbioma Gastrointestinal , Microbiota , Psoríase , Animais , Camundongos , Humanos , Interleucina-17/metabolismo , Estudos Longitudinais , Estudos de Casos e Controles , RNA Ribossômico 16S/genética , Psoríase/tratamento farmacológico , Psoríase/metabolismo , Bactérias/metabolismo , Homeostase
6.
Int Immunopharmacol ; 131: 111824, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38461633

RESUMO

BACKGROUND: Psoriasis is an inflammatory skin disease that occurs repeatedly over time. The natural product of sesquiterpene lactones, Parthenolide (Par), is isolated from Tanacetum parthenium L. (feverfew) which has significant effects on anti-inflammatory. The therapeutic effect of the medication itself is crucial, but different routes of administration of the same drug can also produce different effects. PURPOSE: The aim of our research sought to investigate the ameliorating effects of Par in psoriasis-like skin inflammation and its related mechanism of action. RESULTS: In the IMQ-induced model, intragastric administration of Par reduced the Psoriasis Area and Severity Index (PASI) score, improved skin erythema, scaling, and other symptoms. And Par decreased the expression of Ki67, keratin14, keratin16 and keratin17, and increased the expression of keratin1. Par could reduce IL-36 protein expressions, meanwhile the expression of Il1b, Cxcl1 and Cxcl2 mRNA were also decreased. Par regulated the expression levels of F4/80, MPO and NE. However, skin transdermal administration of Par was more effective. Similarly, Par attenuated IL-36γ, IL-1ß and caspase-1 activated by Poly(I:C) in in vitro and ex vivo. In addition, Par also reduced NE, PR3, and Cathepsin G levels in explant skin tissues. CONCLUSION: Par ameliorated psoriasis-like skin inflammation in both in vivo and in vitro, especially after treatment with transdermal drug delivery, possibly by inhibiting neutrophil extracellular traps and thus by interfering IL-36 signaling pathway. It indicated that Par provides a new research strategy for the treatment of psoriasis-like skin inflammation and is expected to be a promising drug.


Assuntos
Dermatite , Armadilhas Extracelulares , Psoríase , Sesquiterpenos , Animais , Camundongos , Imiquimode/farmacologia , Administração Cutânea , Armadilhas Extracelulares/metabolismo , Pele , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , Psoríase/metabolismo , Sesquiterpenos/uso terapêutico , Sesquiterpenos/farmacologia , Dermatite/tratamento farmacológico , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C
7.
Microbiol Spectr ; 12(4): e0115423, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38441468

RESUMO

Previous studies have profiled the gut microbiota among psoriatic patients compared to that among healthy individuals. However, a comprehensive understanding of the magnitude, direction, and detailed compositional and functional profiles remains limited. Additionally, research exploring the gut microbiota in the context of both plaque psoriasis (PsO) and psoriatic arthritis (PsA) is lacking. To assess the taxonomic and functional characteristics of the gut microbiota in PsO and PsA patients and investigate potential links between the gut microbiota and disease pathogenesis. We collected fecal samples from 70 psoriatic patients (44 PsO and 26 PsA) and 25 age- and gender-matched healthy controls (HC) and employed deep metagenomic sequencing to characterize their gut microbiota. We noted significant alternations in the gut microbiota compositions of both PsO and PsA patients compared to those of HC. Despite limited effect sizes in alpha diversity (12.3% reduction of microbial richness but unchanged evenness in psoriatic patients) and beta diversity (disease accounts for 3.5% of total variations), we consistently observed substantial reductions of Eubacterium rectale in both PsO and PsA patients, with PsA patients exhibiting even lower levels of E. rectale than PsO patients. Additionally, two Alistipes species were also depleted in psoriatic patients. These microorganisms are known to play crucial roles in carbohydrate metabolism pathways, mainly producing short-chain fatty acids with anti-inflammatory effects. Overall, our observations supplemented the profiling of altered gut microbiota in patients with PsO and PsA at the species level and described a link between the dominant short-chain fatty acid-producing bacterial species and systemic immunity in psoriatic patients. IMPORTANCE: In this observational clinical study with sufficient sample size and metagenomic sequencing to profile the gut microbiota, we identified consistent signals of the depleted abundance of Eubacterium rectale and related functional genes among psoriatic patients, including those with psoriatic arthritis. E. rectale may serve as an ecologically important functional unit in the gut microbiota, holding potential as a diagnostic marker and target for therapeutic interventions to achieve lasting effects. Our findings provide comprehensive gut microbiota profiling in psoriasis, resolving previous contradictions and generating new hypotheses for further investigation. These insights may significantly impact psoriasis management and related conditions.


Assuntos
Artrite Psoriásica , Microbioma Gastrointestinal , Psoríase , Humanos , Artrite Psoriásica/diagnóstico , Artrite Psoriásica/tratamento farmacológico , Artrite Psoriásica/metabolismo , Eubacterium , Psoríase/diagnóstico , Psoríase/tratamento farmacológico , Psoríase/metabolismo , Fezes
8.
Cell Death Dis ; 15(3): 180, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429278

RESUMO

Gasdermin E (GSDME) has recently been identified as a critical executioner to mediate pyroptosis. While epidermal keratinocytes can initiate GSDME-mediated pyroptosis, the role of keratinocyte GSDME in psoriatic dermatitis remains poorly characterized. Through analysis of GEO datasets, we found elevated GSDME levels in psoriatic lesional skin. Additionally, GSDME levels correlated with both psoriasis severity and response to biologics treatments. Single-cell RNA sequencing (scRNA-seq) from a GEO dataset revealed GSDME upregulation in keratinocytes of psoriasis patients. In the imiquimod (IMQ)-induced psoriasis-like dermatitis mouse model, both full-length and cleaved forms of caspase-3 and GSDME were elevated in the epidermis. Abnormal proliferation and differentiation of keratinocytes and dermatitis were attenuated in Gsdme-/- mice and keratinocyte-specific Gsdme conditional knockout mice after IMQ stimulation. Exposure of keratinocytes to mixed cytokines (M5), mimicking psoriatic conditions, led to GSDME cleavage. Moreover, the interaction between GSDME-FL and p65 or c-jun was significantly increased after M5 stimulation. GSDME knockdown inhibited nuclear translocation of p65 and c-jun and decreased upregulation of psoriatic inflammatory mediators such as IL1ß, CCL20, CXCL1, CXCL8, S100A8, and S100A9 in M5-challenged keratinocytes. In conclusion, GSDME in keratinocytes contributes to the pathogenesis and progression of psoriasis, potentially in a pyroptosis-independent manner by interacting and promoting translocation of p65 and c-jun. These findings suggest that keratinocyte GSDME could serve as a potential therapeutic target for psoriasis treatment.


Assuntos
Dermatite , Gasderminas , Psoríase , Animais , Humanos , Camundongos , Dermatite/metabolismo , Dermatite/patologia , Gasderminas/metabolismo , Imiquimode/efeitos adversos , Inflamação/patologia , Queratinócitos/patologia , Psoríase/metabolismo , Psoríase/patologia , Fator de Transcrição RelA/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo
9.
Int J Mol Sci ; 25(5)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38473907

RESUMO

Psoriasis is a chronic, immune-mediated, inflammatory disease that has a major impact on patients' quality of life. Common psoriasis-associated comorbidities include cardiovascular diseases, psoriatic arthritis, inflammatory bowel syndromes, type-2 diabetes, and metabolic syndrome. Nonalcoholic fatty liver disease (NAFLD) is affecting a substantial portion of the population and is closely linked with psoriasis. The interplay involves low-grade chronic inflammation, insulin resistance, and genetic factors. The review presents the pathophysiological connections between psoriasis and nonalcoholic fatty liver disease, emphasizing the role of cytokines, adipokines, and inflammatory cascades. The "hepato-dermal axis" is introduced, highlighting how psoriatic inflammation potentiates hepatic inflammation and vice versa. According to the new guidelines, the preliminary examination for individuals with psoriasis should encompass evaluations of transaminase levels and ultrasound scans as part of the initial assessment for this cohort. Considering the interplay, recent guidelines recommend screening for NAFLD in moderate-to-severe psoriasis cases. Treatment implications arise, particularly with medications impacting liver function. Understanding the intricate relationship between psoriasis and NAFLD provides valuable insights into shared pathogenetic mechanisms. This knowledge has significant clinical implications, guiding screening practices, treatment decisions, and the development of future therapeutic approaches for these chronic conditions.


Assuntos
Artrite Psoriásica , Hepatopatia Gordurosa não Alcoólica , Psoríase , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Qualidade de Vida , Psoríase/metabolismo , Artrite Psoriásica/epidemiologia , Inflamação
10.
Cytokine ; 176: 156531, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38301356

RESUMO

Psoriasis is a chronic inflammatory skin disease, and its pathogenesis remains unclear. Although many studies have demonstrated the role of serum interleukin-31 (IL-31) in psoriasis, only one study has examined histopathological expression in lesional skin. This study aimed to investigate the expression of IL-31 in skin biopsy specimens of psoriasis patients compared to healthy subjects and identify its possible correlation to disease severity and itch intensity. Psoriasis patients and healthy volunteers were recruited. Four-millimeter punch biopsy was performed at the lesional skin of psoriasis patients and normal skin of healthy subjects. Expression of IL-31 was measured by immunohistochemistry. Baseline characteristics, disease activity, itch intensity, and related laboratory results were collected. Twenty-six biopsy specimens of psoriasis patients and 10 tissue samples of healthy subjects were evaluated. Epidermal and dermal psoriasis lesions had significantly higher IL-31 expression compared to the healthy skin (P < 0.001). However, there was no significant difference in lesional expression of IL-31 by disease severity or itch intensity. Increased IL-31 expression in the lesions of psoriasis patients suggests the involvement of IL-31 in the pathogenesis of psoriasis.


Assuntos
Psoríase , Humanos , Epiderme/metabolismo , Interleucinas/metabolismo , Prurido , Psoríase/metabolismo , Pele/metabolismo
11.
Curr Mol Pharmacol ; 17: e18761429254358, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38389423

RESUMO

AIM: To investigate the effects and mechanism of Ginsenoside Compound K (GCK) on psoriasis, focusing on the glucocorticoid receptor (GR) in keratinocytes. METHODS: An imiquimod (IMQ)-induced psoriasis-like dermatitis mouse model was generated to evaluate the anti-inflammatory effect of GCK. Hematoxylin and eosin (H&E) staining was used to assess skin pathological changes. Protein expression of K17 and p-p65 in mice skin was assayed by immunohistochemical. Protein expression and phosphorylation of p65 IκB were assayed by Western blot. Protein expression of K1, K6, K10, K16, K17, and GR were assayed by Western blot and immunofluorescence. Enzyme-linked immunosorbent assay (ELISA) was used to determine cytokine levels of TNF-α, IL-6, CXCL-8, and ICAM-1. Real-time polymerase chain reaction (RT-PCR) was used to quantify TNF-α, IL-6, IL-8, and ICAM-1 mRNA expression. Cell viability was determined by Cell Counting Kit-8(CCK-8) assay. A high-content cell-imaging system was used to assay cell proliferation. Nuclear translocation of p65 and GR was assayed by imaging flow cytometry and immunofluorescence microscopy. Small interfering RNA was used to confirm the role of GR in the anti-inflammatory and immunoregulatory effect of GCK in normal human epidermal keratinecytes (NHEKs). RESULTS: GCK reduced the psoriasis area, severity index, and epidermal thickening in IMQ-induced mice. GCK significantly attenuated the mRNA levels of IL-6, IL-8, TNF-α, and ICAM-1 and reduced epidermal hyperproliferation in the skin of IMQ-induced mice. GCK inhibited in vitro activation of NF-κB, leading to attenuated release of inflammatory mediators (IL-6, IL-8, TNF-α, and ICAM-1) and suppression of NHEK hyperproliferation and abnormal differentiation. These inhibitory effects of GCK were diminished by GR silencing in NHEKs. CONCLUSION: GCK suppressed psoriasis-related inflammation by suppressing keratinocyte activation, which may be related to promoting GR nuclear translocation and inhibiting NF-κB activation. In summary, GCK appears to be a GR activator and a promising therapeutic candidate for antipsoriatic agents.


Assuntos
Ginsenosídeos , Molécula 1 de Adesão Intercelular , Psoríase , Humanos , Animais , Camundongos , Molécula 1 de Adesão Intercelular/metabolismo , Molécula 1 de Adesão Intercelular/farmacologia , Molécula 1 de Adesão Intercelular/uso terapêutico , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/uso terapêutico , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Interleucina-8/farmacologia , Interleucina-8/uso terapêutico , Psoríase/tratamento farmacológico , Psoríase/metabolismo , Psoríase/patologia , Queratinócitos/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Imiquimode/efeitos adversos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , RNA Mensageiro/metabolismo
13.
J Autoimmun ; 144: 103177, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38368767

RESUMO

Psoriasis (PS) and atopic dermatitis (AD) are common skin inflammatory diseases characterized by hyper-responsive keratinocytes. Although, some cytokines have been suggested to be specific for each disease, other cytokines might be central to both diseases. Here, we show that Tumor necrosis factor superfamily member 14 (TNFSF14), known as LIGHT, is required for experimental PS, similar to its requirement in experimental AD. Mice devoid of LIGHT, or deletion of either of its receptors, lymphotoxin ß receptor (LTßR) and herpesvirus entry mediator (HVEM), in keratinocytes, were protected from developing imiquimod-induced psoriatic features, including epidermal thickening and hyperplasia, and expression of PS-related genes. Correspondingly, in single cell RNA-seq analysis of PS patient biopsies, LTßR transcripts were found strongly expressed with HVEM in keratinocytes, and LIGHT was upregulated in T cells. Similar transcript expression profiles were also seen in AD biopsies, and LTßR deletion in keratinocytes also protected mice from allergen-induced AD features. Moreover, in vitro, LIGHT upregulated a broad spectrum of genes in human keratinocytes that are clinical features of both PS and AD skin lesions. Our data suggest that agents blocking LIGHT activity might be useful for therapeutic intervention in PS as well as in AD.


Assuntos
Dermatite Atópica , Psoríase , Humanos , Camundongos , Animais , Membro 14 de Receptores do Fator de Necrose Tumoral/genética , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Dermatite Atópica/genética , Dermatite Atópica/metabolismo , Receptor beta de Linfotoxina/genética , Receptor beta de Linfotoxina/metabolismo , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Queratinócitos/metabolismo , Citocinas/metabolismo , Psoríase/genética , Psoríase/metabolismo , Inflamação/metabolismo
14.
EBioMedicine ; 100: 104985, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38306895

RESUMO

BACKGROUND: Psoriasis is a chronic inflammatory skin disease with a Th17-skewed immune phenotype. Although it has been generally accepted that regulatory T cells (Tregs) in lesional psoriatic skin have functional impairment due to the local inflammatory microenvironment, the molecular properties of skin-homing psoriatic Tregs have not been well explored. METHODS: We designed an extensive 39 marker mass cytometry (CyTOF) panel to deeply profile the immune landscape of skin-homing Tregs from 31 people with psoriasis stratified by psoriasis area severity index score as mild (n = 15) to moderate-severe (n = 16) and 32 healthy controls. We further validated the findings with an in-vitro chemokine-mediated Treg migration assay, immunofluorescent imaging of normal and psoriatic lesional skin and analysed public single-cell RNA-sequencing datasets to expand upon our findings into the local tissue microenvironments. FINDINGS: We discovered an overall decrease in CLAhi Tregs and specifically, CLAhiCCR5+ Tregs in psoriasis. Functional markers CD39 and FoxP3 were elevated in psoriatic Tregs. However, CCR7 expression was significantly increased while CCR4 and CLA expression was reduced in psoriatic Tregs and CLAhi Tregs, which was associated with disease severity. Moreover, psoriatic Tregs revealed increased migratory capacity towards CCR7's ligands, CCL19/CCL21. Interrogation of public single-cell RNA sequencing data confirmed reduced expression of skin-trafficking markers in lesional-skin Tregs compared to non-lesioned skin, further substantiated by immunofluorescent staining. INTERPRETATION: Psoriatic circulating Tregs showed an impaired skin-trafficking phenotype thus leading to insufficient suppression of ongoing inflammation in the lesional skin, expanding upon our current understanding of the impairment of Treg-mediated immunosuppression in psoriasis. FUNDING: This research was supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Science and Information and Communications Technology (2020R1C1C1014513, 2021R1A4A5032185, 2020R1F1A1073692); and the new faculty research seed money grant of Yonsei University College of Medicine for 2021 (2021-32-0033).


Assuntos
Psoríase , Linfócitos T Reguladores , Humanos , Receptores CCR7/metabolismo , Psoríase/metabolismo , Pele/metabolismo , Células Th17
15.
Nat Commun ; 15(1): 1663, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396109

RESUMO

Targeted degradation of proteins has emerged as a powerful method for modulating protein homeostasis. Identification of suitable degraders is essential for achieving effective protein degradation. Here, we present a non-covalent degrader construction strategy, based on a modular supramolecular co-assembly system consisting of two self-assembling peptide ligands that bind cell membrane receptors and the protein of interest simultaneously, resulting in targeted protein degradation. The developed lysosome-targeting co-assemblies (LYTACAs) can induce lysosomal degradation of extracellular protein IL-17A and membrane protein PD-L1 in several scavenger receptor A-expressing cell lines. The IL-17A-degrading co-assembly has been applied in an imiquimod-induced psoriasis mouse model, where it decreases IL-17A levels in the skin lesion and alleviates psoriasis-like inflammation. Extending to asialoglycoprotein receptor-related protein degradation, LYTACAs have demonstrated the versatility and potential in streamlining degraders for extracellular and membrane proteins.


Assuntos
Psoríase , Pele , Animais , Camundongos , Pele/patologia , Interleucina-17/metabolismo , Proteólise , Psoríase/metabolismo , Receptores Depuradores/metabolismo , Proteínas de Membrana/metabolismo , Lisossomos/metabolismo , Modelos Animais de Doenças
16.
Int Immunopharmacol ; 130: 111679, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38377853

RESUMO

Psoriasis is a chronic immune-mediated inflammatory skin disease that involves dysregulated proliferation of keratinocytes. Psoriatic skin lesions are characterized by redness, thickness, and scaling. The interleukin axis of IL-23/IL-17 is critically involved in the development of human psoriasis. Imiquimod (IMQ), an agonist of TLR7 is known to induce psoriatic-like skin inflammation in mice. The topical application of IMQ induces systemic inflammation with increased proinflammatory cytokines in serum and secondary lymphoid organs. Further, matrix metalloproteases (MMPs) have been implicated in the pathophysiology of psoriatic-like skin inflammation. The increased MMP9 activity and gene expression of proinflammatory cytokines in IMQ-induced psoriatic skin is mediated by the activation of the MAPK pathway. Moreover, the increased expression of neutrophil-specific chemokines confirmed the infiltration of neutrophils at the site of psoriatic skin inflammation. In contrast, expression of IL-10, an anti-inflammatory cytokine gene expression is reduced in IMQ-treated mice skin. Topical application of unconjugated bilirubin (UCB) and its derivative dimethyl ester of bilirubin (BD1) on IMQ-induced psoriatic mice skin significantly mitigated the symptoms of psoriasis by inhibiting the activity of MMP9. Further, UCB and BD1 reduced neutrophil infiltration as evidenced by decreased myeloperoxidase (MPO) activity and reduced gene expression of proinflammatory cytokines, and neutrophil-specific chemokines. Apart from these modulations UCB and BD1 reduced MAPK phosphorylation and upregulated anti-inflammatory cytokines. To conclude, UCB and BD1 immunomodulated the psoriatic skin inflammation induced by IMQ in mice by inhibiting neutrophil mediated MMP9, decreased proinflammatory cytokines gene expression and modulating the MAPK pathway.


Assuntos
Dermatite , Psoríase , Humanos , Animais , Camundongos , Imiquimode/uso terapêutico , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , Psoríase/metabolismo , Pele/patologia , Queratinócitos/metabolismo , Dermatite/patologia , Citocinas/metabolismo , Inflamação/metabolismo , Anti-Inflamatórios/efeitos adversos , Quimiocinas/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C
17.
EMBO J ; 43(7): 1113-1134, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38418556

RESUMO

Dysregulated macrophage responses and changes in tissue metabolism are hallmarks of chronic inflammation in the skin. However, the metabolic cues that direct and support macrophage functions in the skin are poorly understood. Here, we show that during sterile skin inflammation, the epidermis and macrophages uniquely depend on glycolysis and the TCA cycle, respectively. This compartmentalisation is initiated by ROS-induced HIF-1α stabilization leading to enhanced glycolysis in the epidermis. The end-product of glycolysis, lactate, is then exported by epithelial cells and utilized by the dermal macrophages to induce their M2-like fates through NF-κB pathway activation. In addition, we show that psoriatic skin disorder is also driven by such lactate metabolite-mediated crosstalk between the epidermis and macrophages. Notably, small-molecule inhibitors of lactate transport in this setting attenuate sterile inflammation and psoriasis disease burden, and suppress M2-like fate acquisition in dermal macrophages. Our study identifies an essential role for the metabolite lactate in regulating macrophage responses to inflammation, which may be effectively targeted to treat inflammatory skin disorders such as psoriasis.


Assuntos
Ácido Láctico , Psoríase , Camundongos , Animais , Ácido Láctico/metabolismo , Ácido Láctico/farmacologia , Pele/metabolismo , Macrófagos/metabolismo , Inflamação/metabolismo , Psoríase/metabolismo
18.
Cannabis Cannabinoid Res ; 9(1): 134-146, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38181167

RESUMO

Background: Cannabidiol (CBD), a substance that belongs to the phytocannabinoids, appears to exert antioxidant, neuroprotective, antipsychotic, anticonvulsant, and anticancer properties. Recent evidence supports the immunoregulatory effect of CBD on autoimmune and/or inflammatory disease. Psoriasis is a chronic skin disease. The main immune cell population involved in the pathogenesis of the disease is the interleukin- (IL-) 17-producing T helper (Th) 17 subset. Other subpopulations, such as interferon-γ (IFNγ) -producing Th1 and T cytotoxic (Tc) 1, IL-17-producing Tc17, as well as natural killer (NK) and natural killer T cells (NKT) have been implicated in psoriasis development. Purpose: The aim of the present study was to evaluate the in vitro effect of CBD on the aforementioned subpopulations isolated from patients with psoriasis using flow cytometry. Methods: Cells were stimulated in the presence or absence of CBD, stained and examined using surface and intracellular markers. Results: CBD decreased IL-17 production within the CD3, Th, and NKT cell compartments and IFNγ production within the CD3 compartment in cells isolated from patients with psoriasis. Interestingly, CBD supplementation did not inhibit production of proinflammatory cytokines in cells isolated from healthy individuals. On the contrary, IFNγ-producing Th, Tc, and NK cells increased after CBD supplementation. Conclusion: CBD provides anti-inflammatory effects in T cells isolated from patients with psoriasis. Our results could be the impetus for future investigations regarding the immunomodulatory properties of CBD and its utilization for development of CBD-containing antipsoriatic agents.


Assuntos
Canabidiol , Psoríase , Humanos , Citocinas/metabolismo , Interleucina-17/metabolismo , Canabidiol/farmacologia , Psoríase/tratamento farmacológico , Psoríase/metabolismo , Interleucinas , Interferon gama
19.
Sci Rep ; 14(1): 378, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172327

RESUMO

Sweat is an essential protection system for the body, but its failure can result in pathologic conditions, including several skin diseases, such as palmoplantar pustulosis (PPP). As reduced intraepidermal E-cadherin expression in skin lesions was confirmed in PPP skin lesions, a role for interleukin (IL)-1-rich sweat in PPP has been proposed, and IL-1 has been implicated in the altered E-cadherin expression observed in both cultured keratinocytes and mice epidermis. For further investigation, live imaging of sweat perspiration on a mouse toe-pad under two-photon excitation microscopy was performed using a novel fluorescent dye cocktail (which we named JSAC). Finally, intraepidermal vesicle formation which is the main cause of PPP pathogenesis was successfully induced using our "LASER-snipe" technique with JSAC. "LASER-snipe" is a type of laser ablation technique that uses two-photon absorption of fluorescent material to destroy a few acrosyringium cells at a pinpoint location in three-dimensional space of living tissue to cause eccrine sweat leakage. These observatory techniques and this mouse model may be useful not only in live imaging for physiological phenomena in vivo such as PPP pathomechanism investigation, but also for the field of functional physiological morphology.


Assuntos
Psoríase , Pele , Animais , Camundongos , Pele/metabolismo , Suor/metabolismo , Psoríase/metabolismo , Epiderme/metabolismo , Glândulas Écrinas/metabolismo , Interleucina-1/metabolismo , Imagem Óptica/efeitos adversos , Caderinas/metabolismo
20.
J Ethnopharmacol ; 324: 117714, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38184027

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The inflammatory skin condition psoriasis is immune-related. The decoction of Jianpi-Yangxue-Jiiedu (JPYX) is a useful medication for psoriasis. However, the underlying mechanics of JPYX have not yet been clarified. AIM OF THE STUDY: The objective of this study was to investigate the mechanism underlying the efficacy of JPYX in the treatment of psoriasis in the context of a high-fat diet. MATERIALS AND METHODS: This work generated a high-fat feeding model of imiquimod (IMQ)-induced psoriasis-like lesion mice. The blood composition of JPYX was examined using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The mechanism of JPYX decoction for treating psoriasis was predicted using methods of network pharmacology, metabolomics, and transcriptomics. RESULTS: JPYX prevented the release of inflammatory cytokines, decreased keratinocyte proliferation, enhanced the percentage of Treg cells in the skin, lymph nodes, and thymus, and greatly alleviated psoriatic lesions. Network pharmacology predicted that IL-1ß, TNF, STAT3, and EGFR may be potential targets, and KEGG results showed that PI3K-AKT-mTOR may be a potential mechanism of action. Verification of experimental data demonstrated that the JPYX decoction dramatically decreased mTOR and AKT phosphorylation. According to metabolomics analysis, amino acids and their metabolites, benzene and its substitutes, aldehyde ketone esters, heterocyclic compounds, etc. were the primary metabolites regulated by JPYX. KEGG enrichment analysis of differential metabolites was performed. Fatty acid biosynthesis, Type I polyketide structures, Steroid hormone biosynthesis, Biosynthesis of unsaturated fatty acid, etc. Transcriptomic results showed that JPYX significantly regulated skin development, keratinocyte differentiation, and oxidative phosphorylation. Further experimental data verification showed that JPYX decoction significantly reduced the mRNA levels of mt-Nd4, mt-Nd5, mt-Nd1, Ifi205, Ifi211, and mt-Atp8. CONCLUSIONS: JPYX may improve psoriasis by regulating the metabolic pathways of fatty acids and electron transport of oxidative phosphorylation.


Assuntos
Medicamentos de Ervas Chinesas , Psoríase , Animais , Camundongos , Fosforilação Oxidativa , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transporte de Elétrons , Fosfatidilinositol 3-Quinases/metabolismo , Cromatografia Líquida , Elétrons , Espectrometria de Massas em Tandem , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , Psoríase/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Medicamentos de Ervas Chinesas/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...